Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.485
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Biotechnol J ; 19(2): e2300495, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403407

ABSTRACT

The optimization of bioprocess for CHO cell culture involves careful consideration of factors such as nutrient consumption, metabolic byproduct accumulation, cell growth, and monoclonal antibody (mAb) production. Valuable insights can be obtained by understanding cellular physiology to ensure robust and efficient bioprocess. This study aims to improve our understanding of the CHO-K1 cell metabolism using 1 H NMR-based metabolomics. Initially, the variations in culture performance and metabolic profiles under varied aeration conditions and copper supplementations were thoroughly examined. Furthermore, a comprehensive metabolic pathway analysis was performed to assess the impact of these conditions on the implicated pathways. The results revealed substantial alterations in the pyruvate metabolism, histidine metabolism, as well as phenylalanine, tyrosine and tryptophan biosynthesis, which were especially evident in cultures subjected to copper deficiency conditions. Conclusively, significant metabolites governing cell growth and mAb titer were identified through orthogonal partial least square-discriminant analysis (OPLS-DA). Metabolites, including glycerol, alanine, formate, glutamate, phenylalanine, and valine, exhibited strong associations with distinct cell growth phases. Additionally, glycerol, acetate, lactate, formate, glycine, histidine, and aspartate emerged as metabolites influencing cell productivity. This study demonstrates the potential of employing 1 H NMR-based metabolomics technology in bioprocess research. It provides valuable guidance for feed medium development, feeding strategy design, bioprocess parameter adjustments, and ultimately the enhancement of cell proliferation and mAb yield.


Subject(s)
Copper , Histidine , Cricetinae , Animals , Glycerol , Metabolomics/methods , Cricetulus , Phenylalanine , Formates , Dietary Supplements
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159452, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244676

ABSTRACT

Very long-chain fatty acids (VLCFAs) are degraded exclusively in peroxisomes, as evidenced by the accumulation of VLCFAs in patients with certain peroxisomal disorders. Although accumulation of VLCFAs is considered to be associated with health issues, including neuronal degeneration, the mechanisms underlying VLCFAs-induced tissue degeneration remain unclear. Here, we report the toxic effect of VLCFA and protective effect of C18: 1 FA in peroxisome-deficient CHO cells. We examined the cytotoxicity of saturated and monounsaturated VLCFAs with chain-length at C20-C26, and found that longer and saturated VLCFA showed potent cytotoxicity at lower accumulation levels. Furthermore, the extent of VLCFA-induced toxicity was found to be associated with a decrease in cellular C18:1 FA levels. Notably, supplementation with C18:1 FA effectively rescued the cells from VLCFA-induced apoptosis without reducing the cellular VLCFAs levels, implying that peroxisome-deficient cells can survive in the presence of accumulated VLCFA, as long as the cells keep sufficient levels of cellular C18:1 FA. These results suggest a therapeutic potential of C18:1 FA in peroxisome disease and may provide new insights into the pharmacological effect of Lorenzo's oil, a 4:1 mixture of C18:1 and C22:1 FA.


Subject(s)
Oleic Acid , Peroxisomes , Animals , Cricetinae , Humans , Oleic Acid/pharmacology , Oleic Acid/metabolism , Peroxisomes/metabolism , Fatty Acids/metabolism , Cricetulus , CHO Cells , Fatty Acids, Nonesterified/metabolism , Apoptosis
3.
Food Chem Toxicol ; 184: 114437, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185402

ABSTRACT

The use of nano-based dietary supplements is increasing around the world, as nanotechnology can help enhance nutrient bioavailability. ALP1018 is a newly developed iron-zinc complex supplement designed as a nanoformulation to improve the efficacy of iron and zinc supplementation. However, safety concerns have been raised, as there is no clear evaluation of ALP1018 toxicity. The goal of this study was to determine the potential mutagenicity and genotoxicity of ALP1018 through three standard screenings: the Ames test, which evaluates bacterial reverse mutations; the in vitro test of chromosomal aberration in Chinese hamster lung cells; and the in vivo micronucleus assay using ICR mice. ALP1018 showed no mutagenic effect, as no increase was observed in the presence or absence of metabolic activation (S9 mix) in revertant colonies on all the bacterial strains used in the Ames test. No structural chromosomal abnormalities were observed in the presence or absence of the S9 mix in mammalian cells used in the chromosomal aberration assay. In the micronucleus test, the frequency of micronucleated polychromatic erythrocytes was not significantly increased in mouse bone marrow cells. Based on these findings, we can conclude that ALP1018 is safe to use and has no mutagenic or genotoxic potential.


Subject(s)
Chromosome Aberrations , DNA Damage , Cricetinae , Mice , Animals , Mutagenicity Tests , Mice, Inbred ICR , Micronucleus Tests , Cricetulus , Mutagens/toxicity , Dietary Supplements/toxicity , Iron , Zinc
4.
Biotechnol Prog ; 40(1): e3402, 2024.
Article in English | MEDLINE | ID: mdl-37904720

ABSTRACT

In recent years, serum-free medium for mammalian cell cultivation has attracted a lot of attention, considering the high cost of production and environmental load involved in developing the conventional animal sera. The use of alternative growth-promoting products in mammalian cell cultivation such as extracts from microalgae has proven to be quite beneficial and environmental-friendly. This research aims to cultivate mammalian cells with growth-promoting factors derived from Chlorococcum littorale. We have established a simple extraction using the ultrasonication method and applied the extract in place of serum on mammalian C2C12 cell lines, 3T3 cell lines, and CHO cell lines to compare and analyze the effectiveness of the extract. Cell passage was conducted in a suspended culture condition with the addition of the extract. The results indicate that the extract from microalgae shows a high proliferation rate in all cell lines without fetal bovine serum. Moreover, it is eco-friendly and has huge potential to replace the traditional cell culture system. It could be applied in the fields of regenerative medicine, gene/cell therapies, as well as cultured meat production.


Subject(s)
Plant Extracts , Cricetinae , Animals , CHO Cells , Cricetulus , Cell Proliferation
5.
Biologicals ; 84: 101713, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37793309

ABSTRACT

In the current transition to intensified upstream processing, the risks of adopting traditional single-use systems for high-titer, long-duration perfusion cultures, have thus far not been considered. This case study uses the Failure Modes and Effects Analysis (FMEA) method to evaluate the risks associated with implementing upstream single-use technology. The simulated model process was used to compare the risk level of single-use technology for a traditional fed-batch cell culture with that for perfusion culture, under the same annual protein production conditions. To provide a reasonable source of potential risk for FMEA, all single-use upstream operations for both fed-batch and perfusion processes were investigated using an analytical method developed to quantify the impact of process parameters and operating conditions on single-use system specifications and to ensure objectivity. Many of the risks and their levels, were similar in long-duration perfusion cultures and fed-batch cultures. However, differences were observed for high-risk components such as daily sampling and installation. The result of this analysis indicates that the reasons for risk are different for fed-batch cultures and perfusion cultures such as larger bioreactors in fed-batch and longer runs in perfusion, respectively. This risk assessment method could identify additional control measures and be part of a holistic contamination control strategy and help visualize their effectiveness.


Subject(s)
Biological Products , Animals , Cricetinae , Bioreactors , Batch Cell Culture Techniques/methods , Antibodies, Monoclonal , Perfusion , Cricetulus
6.
Article in English | MEDLINE | ID: mdl-37770144

ABSTRACT

Callingcard Vine (Entada polystachya (L.) DC. var. polystachya - Fabaceae) is a common plant in coastal thickets from western Mexico through Central America to Colombia and Brazil, especially in Amazon biome. It has been popularly used as a urinary burning reliever and diuretic. However, the plant chemical constituents are poorly understood and Entada spp. genotoxic potential have not been previously investigated. In the present study we determined the chemical composition of the aqueous E. polystachya crude seed extract (EPCSE) and evaluated the cytotoxic, genotoxic and mutagenic properties of EPCSE in Salmonella typhimurium and Chinese hamster fibroblast (V79) cells. Cytotoxic activity was also evaluated in tumor cell lines (HT29, MCF7 and U87) and non-malignant cells (MRC5). The chemical analysis by High Resolution Mass Spectrometry (HRMS) of EPCSE indicated the presence of saponin and chalcone. The results of the MTT and clonal survival assays suggest that EPCSE is cytotoxic to V79 cells. Survival analysis showed higher IC50 in non-tumor compared with tumor cell lines. EPCSE showed induction of DNA strand breaks as revealed by the alkaline comet assay and micronucleus test. Using the modified comet assay, it was possible to detect the induction of oxidative DNA base damage by EPCSE in V79 cells. Consistently, the extract induced increase lipid peroxidation (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities in V79 cells. In addition, EPCSE induced mutations in S. typhimurium TA98 and TA100 strains, confirming a mutagenic potential. Taken together, our results suggest that EPCSE is cytotoxic and genotoxic to V79 cells and mutagenic to S. typhimurium. These properties can be related to the pro-oxidant ability of the extract and induction of DNA lesions. Additionally, EPCSE could inhibit the growth of tumor cells, especially human colorectal adenocarcinoma (HT29) cell line, and can constitute a possible source of antitumor natural agents.


Subject(s)
Antineoplastic Agents , Fabaceae , Cricetinae , Animals , Humans , Mutagens/toxicity , DNA Damage , Cricetulus , Comet Assay , Cell Line, Tumor , Plant Extracts/toxicity , DNA
7.
Bioengineered ; 14(1): 2244235, 2023 12.
Article in English | MEDLINE | ID: mdl-37598369

ABSTRACT

Antibody-drug conjugates (ADCs) can improve therapeutic indices compared to plain monoclonal antibodies (mAbs). However, ADC synthesis is complex because the components are produced separately in CHO cells (mAb) and often by chemical synthesis (drug). They are individually purified, coupled, and then the ADC is purified, increasing production costs compared to regular mAbs. In contrast, it is easier to produce recombinant fusion proteins consisting of an antibody derivative, linker and proteinaceous toxin, i.e. a recombinant immunotoxin (RIT). Plants are capable of the post-translational modifications needed for functional antibodies and can also express active protein toxins such as the recombinant mistletoe lectin viscumin, which is not possible in prokaryotes and mammalian cells respectively. Here, we used Nicotiana benthamiana and N. tabacum plants as well as tobacco BY-2 cell-based plant cell packs (PCPs) to produce effective RITs targeting CD64 as required for the treatment of myelomonocytic leukemia. We compared RITs with different subcellular targeting signals, linkers, and proteinaceous toxins. The accumulation of selected candidates was improved to ~ 40 mg kg-1 wet biomass using a design of experiments approach, and corresponding proteins were isolated with a purity of ~ 80% using an optimized affinity chromatography method with an overall yield of ~ 84%. One anti-CD64 targeted viscumin-based drug candidate was characterized in terms of storage stability and cytotoxicity test in vitro using human myelomonocytic leukemia cell lines. We identified bottlenecks in the plant-based expression platform that require further improvement and assessed critical process parameters that should be considered during process development for plant-made RITs.


Toxin type and domain sequence affect accumulation of recombinant immunotoxins.Transient expression in plant cell packs and intact plants correlates well.IC50 values of toxicity correlate with the cell surface receptor concentration.


Subject(s)
Immunotoxins , Leukemia , Animals , Humans , Cricetinae , Immunotoxins/genetics , Immunotoxins/pharmacology , Cricetulus , Plant Cells , Nicotiana/genetics , Antibodies, Monoclonal/genetics , CHO Cells
8.
Bioprocess Biosyst Eng ; 46(10): 1457-1470, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37633861

ABSTRACT

Biologics manufacturing is increasingly moving toward intensified processes that require novel control strategies in order to achieve higher titers in shorter periods of time compared to traditional fed-batch cultures. In order to implement these strategies for intensified processes, continuous process monitoring is often required. To this end, inline Raman spectroscopy was used to develop partial least squares models to monitor changes in residual concentrations of glucose, phenylalanine and methionine during the culture of five different glutamine synthetase piggyBac® Chinese hamster ovary clones cultured using an intensified high inoculation density fed-batch platform process. Continuous monitoring of residual metabolite concentrations facilitated automated feed-rate adjustment of three supplemental feeds to maintain glucose, phenylalanine, and methionine at desired setpoints, while maintaining other nutrient concentrations at acceptable levels across all clones cultured on the high inoculation density platform process. Furthermore, all clones cultured on this process achieved high viable cell concentrations over the course of culture, indicating no detrimental impacts from the proposed feeding strategy. Finally, the automated control strategy sustained cultures inoculated at high cell densities to achieve product concentrations between 5 and 8.3 g/L over the course of 12 days of culture.


Subject(s)
Methionine , Racemethionine , Animals , Cricetinae , CHO Cells , Cricetulus , Glucose , Phenylalanine
9.
Adv Biochem Eng Biotechnol ; 186: 103-120, 2023.
Article in English | MEDLINE | ID: mdl-37640910

ABSTRACT

Cell-free protein synthesis (CFPS) has emerged as a powerful tool for the rapid synthesis and analysis of various structurally and functionally distinct proteins. These include 'difficult-to-express' membrane proteins such as large multipass ion channel receptors. Owing to their membrane localization, eukaryotic CFPS supplemented with endoplasmic reticulum (ER)-derived microsomal vesicles has proven to be an efficient system for the synthesis of functional membrane proteins. Here we demonstrate the applicability of the eukaryotic cell-free systems based on lysates from the mammalian Chinese Hamster Ovary (CHO) and insect Spodoptera frugiperda (Sf21) cells. We demonstrate the efficiency of the systems in the de novo cell-free synthesis of the human cardiac ion channels: ether-a-go-go potassium channel (hERG) KV11.1 and the voltage-gated sodium channel hNaV1.5.


Subject(s)
Ether-A-Go-Go Potassium Channels , Heart , Animals , Cricetinae , Humans , Ether-A-Go-Go Potassium Channels/genetics , CHO Cells , Cricetulus , Membrane Proteins
10.
Biotechnol Prog ; 39(6): e3368, 2023.
Article in English | MEDLINE | ID: mdl-37497992

ABSTRACT

A majority of the biotherapeutics industry today relies on the manufacturing of monoclonal antibodies from Chinese hamster ovary (CHO) cells, yet challenges remain with maintaining consistent product quality from high-producing cell lines. Previous studies report the impact of individual trace metal supplemental on CHO cells, and thus, the combinatorial effects of these metals could be leveraged to improve bioprocesses further. A three-level factorial experimental design was performed in fed-batch shake flasks to evaluate the impact of time wise addition of individual or combined trace metals (zinc and copper) on CHO cell culture performance. Correlations among each factor (experimental parameters) and response variables (changes in cell culture performance) were examined based on their significance and goodness of fit to a partial least square's regression model. The model indicated that zinc concentration and time of addition counter-influence peak viable cell density and antibody production. Meanwhile, early copper supplementation influenced late-stage ROS activity in a dose-dependent manner likely by alleviating cellular oxidative stress. Regression coefficients indicated that combined metal addition had less significant impact on titer and specific productivity compared to zinc addition alone, although titer increased the most under combined metal addition. Glycan analysis showed that combined metal addition reduced galactosylation to a greater extent than single metals when supplemented during the early growth phase. A validation experiment was performed to confirm the validity of the regression model by testing an optimized setpoint of metal supplement time and concentration to improve protein productivity.


Subject(s)
Copper , Trace Elements , Cricetinae , Animals , Cricetulus , CHO Cells , Research Design , Cell Culture Techniques , Zinc , Metals , Batch Cell Culture Techniques , Bioreactors
11.
Front Immunol ; 14: 1182556, 2023.
Article in English | MEDLINE | ID: mdl-37122746

ABSTRACT

Liposomes composed of sulfated lactosyl archaeol (SLA) have been shown to be a safe and effective vaccine adjuvant with a multitude of antigens in preclinical studies. In particular, SLA-adjuvanted SARS-CoV-2 subunit vaccines based on trimeric spike protein antigens were shown to be immunogenic and efficacious in mice and hamsters. With the continued emergence of SARS-CoV-2 variants, we sought to evaluate next-generation vaccine formulations with an updated antigenic identity. This was of particular interest for the widespread Omicron variant, given the abundance of mutations and structural changes observed within its spike protein compared to other variants. An updated version of our resistin-trimerized SmT1 corresponding to the B.1.1.529 variant was successfully generated in our Chinese Hamster Ovary (CHO) cell-based antigen production platform and characterized, revealing some differences in protein profile and ACE2 binding affinity as compared to reference strain-based SmT1. We next evaluated this Omicron-based spike antigen for its immunogenicity and ability to generate robust antigen-specific immune responses when paired with SLA liposomes or AddaS03 (a mimetic of the AS03 oil-in-water emulsion adjuvant system found in commercialized SARS-CoV-2 protein vaccines). Immunization of mice with vaccine formulations containing this updated antigen with either adjuvant stimulated neutralizing antibody responses favouring Omicron over the reference strain. Cell-mediated responses, which play an important role in the neutralization of intracellular infections, were induced to a much higher degree with the SLA adjuvant relative to the AddaS03-adjuvanted formulations. As such, updated vaccines that are better capable of targeting towards SARS-CoV-2 variants can be generated through an optimized combination of antigen and adjuvant components.


Subject(s)
Adjuvants, Vaccine , COVID-19 , Cricetinae , Animals , Mice , SARS-CoV-2 , Glycolipids , Sulfates , CHO Cells , Liposomes , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , Cricetulus , Immunity, Cellular , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Archaea , COVID-19 Vaccines
12.
Int J Dev Neurosci ; 83(5): 417-430, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37211717

ABSTRACT

Neural tube defects (NTDs) are severe congenital malformations that can lead to lifelong disability. Wuzi Yanzong Pill (WYP) is an herbal formula of traditional Chinese medicine (TCM) that has been shown to have a protective effect against NTDs in a rodent model induced by all-trans retinoic acid (atRA), but the mechanism remains unclear. In this study, the neuroprotective effect and mechanism of WYP on NTDs were investigated in vivo using an atRA-induced mouse model and in vitro using cell injury model induced by atRA in Chinese hamster ovary (CHO) cells and Chinese hamster dihydrofolate reductase-deficient (CHO/dhFr) cells. Our findings suggest that WYP has an excellent preventive effect on atRA-induced NTDs in mouse embryos, which may be related to the activation of the PI3K/Akt signaling pathway, improved embryonic antioxidant capacity, and anti-apoptotic effects, and this effect is not dependent on folic acid (FA). Our results demonstrated that WYP significantly reduced the incidence of NTDs induced by atRA; increased the activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and content of glutathione (GSH); decreased the apoptosis of neural tube cells; up-regulated the expression of phosphatidylinositol 3 kinase (PI3K), phospho protein kinase B (p-Akt), nuclear factor erythroid-2 related factor (Nrf2), and b-cell lymphoma-2 (Bcl-2); and down-regulated the expression of bcl-2-associated X protein (Bax). Our in vitro studies suggested that the preventive effect of WYP on atRA-treated NTDs was independent of FA, which might be attributed to the herbal ingredients of WYP. The results suggest that WYP had an excellent prevention effect on atRA-induced NTDs mouse embryos, which may be independent of FA but related to the activation of the PI3K/Akt signaling pathway and improvement of embryonic antioxidant capacity and anti-apoptosis.


Subject(s)
Neural Tube Defects , Proto-Oncogene Proteins c-akt , Mice , Animals , Cricetinae , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , CHO Cells , Cricetulus , Signal Transduction , Tretinoin/pharmacology , Neural Tube Defects/chemically induced , Neural Tube Defects/prevention & control , Oxidative Stress
13.
Biotechnol Bioeng ; 120(9): 2542-2558, 2023 09.
Article in English | MEDLINE | ID: mdl-37096798

ABSTRACT

Previously, we identified six inhibitory metabolites (IMs) accumulating in Chinese hamster ovary (CHO) cultures using AMBIC 1.0 community reference medium that negatively impacted culture performance. The goal of the current study was to modify the medium to control IM accumulation through design of experiments (DOE). Initial over-supplementation of precursor amino acids (AAs) by 100% to 200% in the culture medium revealed positive correlations between initial AA concentrations and IM levels. A screening design identified 5 AA targets, Lys, Ile, Trp, Leu, Arg, as key contributors to IMs. Response surface design analysis was used to reduce initial AA levels between 13% and 33%, and these were then evaluated in batch and fed-batch cultures. Lowering AAs in basal and feed medium and reducing feed rate from 10% to 5% reduced inhibitory metabolites HICA and NAP by up to 50%, MSA by 30%, and CMP by 15%. These reductions were accompanied by a 13% to 40% improvement in peak viable cell densities and 7% to 50% enhancement in IgG production in batch and fed-batch processes, respectively. This study demonstrates the value of tuning specific AA levels in reference basal and feed media using statistical design methodologies to lower problematic IMs.


Subject(s)
Amino Acids , Batch Cell Culture Techniques , Cricetinae , Animals , Cricetulus , Amino Acids/metabolism , CHO Cells , Culture Media/chemistry , Batch Cell Culture Techniques/methods
14.
Bioelectrochemistry ; 152: 108437, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37030093

ABSTRACT

Focusing electric pulse effects away from electrodes is a challenge because the electric field weakens with distance. Previously we introduced a remote focusing method based on bipolar cancellation, a phenomenon of low efficiency of bipolar nanosecond electric pulses (nsEP). Superpositioning two bipolar nsEP into a unipolar pulse canceled bipolar cancellation ("CANCAN" effect), enhancing bioeffects at a distance despite the electric field weakening. Here, we introduce the next generation (NG) CANCAN focusing with unipolar nsEP packets designed to produce bipolar waveforms near electrodes (suppressing electroporation) but not at the remote target. NG-CANCAN was tested in CHO cell monolayers using a quadrupole electrode array and labeling electroporated cells with YO-PRO-1 dye. We routinely achieved 1.5-2 times stronger electroporation in the center of the quadrupole than near electrodes, despite a 3-4-fold field attenuation. With the array lifted 1-2 mm above the monolayer (imitating a 3D treatment), the remote effect was enhanced up to 6-fold. We analyzed the role of nsEP number, amplitude, rotation, and inter-pulse delay, and showed how remote focusing is enhanced when re-created bipolar waveforms exhibit stronger cancellation. Advantages of NG-CANCAN include the exceptional versatility of designing pulse packets and easy remote focusing using an off-the-shelf 4-channel nsEP generator.


Subject(s)
Electricity , Electroporation , Cricetinae , Animals , Cell Membrane Permeability , Cricetulus , Electroporation/methods , Electroporation Therapies , CHO Cells , Electric Stimulation/methods
15.
Regul Toxicol Pharmacol ; 140: 105382, 2023 May.
Article in English | MEDLINE | ID: mdl-36944407

ABSTRACT

Goji berry leaf (GL) has been used for medicinal foods for its pharmacological effects, including anti-oxidative and anti-obesity activities. Nevertheless, toxicological information on GL is limited for developing health functional ingredient. The aim of the research was to evaluate the single dose acute, 14-day repeated oral toxicity, and genotoxicity of standardized roasted GL extract (rGL) rich in kaempferol-3-O-sophoroside-7-O-glucoside. Tested rGL was found to be stable as kaempferol-3-O-sophoroside-7-O-glucoside, showing 0.7-2.1% of analytical standard variance. According to the single dose toxicity for 14 days, the lethal dose of rGL was determined to be ≥ 2000 mg/kg. Repeated doses of 0-1000 mg/kg of rGL per day for 14 days did not show any toxicity signs or gross pathological abnormalities. No genotoxic signs for the rGL treatment appeared via bacterial reverse mutation up to 5000 µg/plate. There was no significant increase in chromosomal aberration of rGL irrespective of metabolic activation by using CHO-K1 cells (p > 0.05). Regarding carcinogenic toxicity, chromosomal aberrations were not induced at 2000 mg of rGL/kg by using the in vivo bone marrow micronucleus test (p > 0.05). Results from the current study suggest that rGL could be used as a functional ingredient to provide various effects with safety assurance.


Subject(s)
Lycium , Cricetinae , Animals , Mutagenicity Tests/methods , Plant Extracts/toxicity , Glycosides/toxicity , Kaempferols/toxicity , Chromosome Aberrations , Cricetulus , Glucosides/toxicity
16.
Biotechnol J ; 18(6): e2200243, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36892270

ABSTRACT

Hydrolysates are used as media supplements although their role is not well characterized. In this study, cottonseed hydrolysates, which contained peptides and galactose as supplemental substrates, were added to Chinese hamster ovary (CHO) batch cultures, enhancing cell growth, immunoglobulin (IgG) titers, and productivities. Extracellular metabolomics coupled with tandem mass tag (TMT) proteomics revealed metabolic and proteomic changes in cottonseed-supplemented cultures. Shifts in production and consumption dynamics of glucose, glutamine, lactate, pyruvate, serine, glycine, glutamate, and aspartate suggest changes in tricarboxylic acid (TCA) and glycolysis metabolism following hydrolysate inputs. Quantitative proteomics revealed 5521 proteins and numerous changes in relative abundance of proteins related to growth, metabolism, oxidative stress, protein productivity, and apoptosis/cell death at day 5 and day 6. Differential abundance of amino acid transporter proteins and catabolism enzymes such as branched-chain-amino-acid aminotransferase (BCAT)1 and fumarylacetoacetase (FAH) can alter availability and utilization of several amino acids. Also, pathways involved in growth including the polyamine biosynthesis through higher ornithine decarboxylase (ODC1) abundance and hippo signaling were upregulated and downregulated, respectively. Central metabolism rewiring was indicated by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) downregulation, which corresponded with re-uptake of secreted lactate in the cottonseed-supplemented cultures. Overall, cottonseed hydrolysate supplementation modified culture performance by altering cellular activities critical to growth and protein productivity including metabolism, transport, mitosis, transcription, translation, protein processing, and apoptosis. HIGHLIGHTS: Cottonseed hydrolysate, as a medium additive, enhances Chinese hamster ovary (CHO) cell culture performance. Metabolite profiling and tandem mass tag (TMT) proteomics characterize its impact on CHO cells. Rewired nutrient utilization is observed via glycolysis, amino acid, and polyamine metabolism. Hippo signaling pathway impacts cell growth in the presence of cottonseed hydrolysate.


Subject(s)
Cottonseed Oil , Proteomics , Cricetinae , Animals , Cricetulus , CHO Cells , Batch Cell Culture Techniques , Lactic Acid/metabolism , Pyruvic Acid , Amino Acids/metabolism , Dietary Supplements , Polyamines
17.
Metab Eng ; 76: 204-214, 2023 03.
Article in English | MEDLINE | ID: mdl-36822463

ABSTRACT

Cysteine is a critically important amino acid necessary for mammalian cell culture, playing key roles in nutrient supply, disulfide bond formation, and as a precursor to antioxidant molecules controlling cellular redox. Unfortunately, its low stability and solubility in solution make it especially problematic as an essential medium component that must be added to Chinese hamster ovary and other mammalian cell cultures. Therefore, CHO cells have been engineered to include the capacity of endogenously synthesizing cysteine by overexpressing multiple enzymes, including cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CTH) and glycine N-methyltransferase (GNMT) to reconstruct the reverse transsulfuration pathway and overcome a key metabolic bottleneck. Some limited cysteine biosynthesis was obtained by overexpressing CBS and CTH for converting homocysteine to cysteine but robust metabolic synthesis from methionine was only possibly after incorporating GNMT which likely represents a key bottleneck step in the cysteine biosynthesis pathway. CHO cells with the reconstructed pathway exhibit the strong capability to proliferate in cysteine-limited and cysteine-free batch and fed-batch cultures at levels comparable to wildtype cells with ample cysteine supplementation, providing a selectable marker for CHO cell engineering. GNMT overexpression led to the accumulation of sarcosine byproduct, but its accumulation did not affect cell growth. Furthermore, pathway reconstruction enhanced CHO cells' reduced and glutathione levels in cysteine-limited conditions compared to unmodified cells, and greatly enhanced survivability and maintenance of redox homeostasis under oxidative stress induced by addition of menadione in cysteine-deficient conditions. Such engineered CHO cell lines can potentially reduce or even eliminate the need to include cysteine in culture medium, which not only reduces the cost of mammalian media but also promises to transform media design by solving the challenges posed by low stability and solubility of cysteine and cystine in future mammalian biomanufacturing processes.


Subject(s)
Amino Acids , Oxidative Stress , Cricetinae , Animals , Cricetulus , CHO Cells , Amino Acids/metabolism , Cystathionine beta-Synthase/metabolism , Cysteine/genetics , Cysteine/metabolism
18.
Biotechnol J ; 18(4): e2200570, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36717516

ABSTRACT

Aerobic glycolysis and its by-product lactate accumulation are usually associated with adverse culture phenotypes such as poor cell viability and productivity. Due to the lack of knowledge on underlying mechanisms and accompanying biological processes, the regulation of aerobic glycolysis has been an ongoing challenge in culture process development for therapeutic protein productivity. Nicotinamide adenine dinucleotide (NAD+ ), a coenzyme and co-substrate in energy metabolism, promotes the conversion of inefficient glycolysis into an efficient oxidative phosphorylation (OXPHOS) pathway. However, the effect of NAD+ on Chinese hamster ovary (CHO) cells for biopharmaceutical production has not been reported yet. In this work, we aimed to elucidate the influence of NAD+ on cell culture performance by examining metabolic shifts and mAb productivity. The supplementation of NAD+ increased the intracellular concentration of NAD+ and promoted SIRT3 expression. Antibody titer and the specific productivity in the growth phase were improved by up to 1.82- and 1.88-fold, respectively, with marginal restrictions on cell growth. NAD+ significantly reduced the accumulation of reactive oxygen species (ROS) and the lactate yield from glucose, determined by lactate accumulation versus glucose consumption (YLAC/GLC ). In contrast, OXPHOS capacity and amino acid consumption rate increased substantially. Collectively, these results suggest that NAD+ contributes to improving therapeutic protein productivity in bioprocessing via inducing an energy metabolic shift.


Subject(s)
Glucose , NAD , Cricetinae , Animals , Cricetulus , NAD/metabolism , CHO Cells , Glucose/metabolism , Lactic Acid/metabolism , Dietary Supplements
19.
Biotechnol Prog ; 39(2): e3313, 2023 03.
Article in English | MEDLINE | ID: mdl-36367527

ABSTRACT

Therapeutic protein productivity and glycosylation pattern highly rely on cell metabolism. Cell culture medium composition and feeding strategy are critical to regulate cell metabolism. In this study, the relationship between toxic metabolic inhibitors and their nutrient precursors was explored to identify the critical medium components toward cell growth and generation of metabolic by-products. Generic CHO metabolic model was tailored and integrated with CHO fed-batch metabolomic data to obtain a cell line- and process-specific model. Flux balance analysis study was conducted on toxic metabolites cytidine monophosphate, guanosine monophosphate and n-acetylputrescine-all of which were previously reported to generate from endogenous cell metabolism-by mapping them to a compartmentalized carbon utilization network. Using this approach, the study projected high level of inhibitory metabolites accumulation when comparing three industrially relevant fed-batch feeding conditions one against another, from which the results were validated via a dose-dependent amino acids spiking study. In the end, a medium optimization design was employed to lower the amount of supplemented nutrients, of which improvements in critical process performance were realized at 40% increase in peak viable cell density (VCD), 15% increase in integral VCD, and 37% increase in growth rate. Tight control of toxic by-products was also achieved, as the study measured decreased inhibitory metabolites accumulation across all conditions. Overall, the study successfully presented a digital twin approach to investigate the intertwined relationship between supplemented medium constituents and downstream toxic metabolites generated through host cell metabolism, further elucidating different control strategies capable of improving cellular phenotypes and regulating toxic inhibitors.


Subject(s)
Amino Acids , Nutrients , Cricetinae , Animals , Cricetulus , CHO Cells , Culture Media/chemistry , Amino Acids/metabolism , Batch Cell Culture Techniques/methods
20.
Phytother Res ; 37(4): 1449-1461, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36450691

ABSTRACT

Polycystic ovarian syndrome (PCOS) is a hormonal disorder that causes enlargement of ovaries and follicular maturation arrest, which lacks efficient treatment. N2, a semi-natural triterpenoid from the neem family, was already reported to have antioxidant and antiinflammatory properties in our previous report. This study investigated the anti-androgenic property of N2 on testosterone-induced oxidative stress in Chinese Hamster Ovarian cells (CHO) and PCOS zebrafish model. The testosterone exposure disrupted the antioxidant enzymes and ROS level and enhanced the apoptosis in both CHO cells and PCOS zebrafish. However, N2 significantly protected the CHO cells from ROS and apoptosis. N2 improved the Gonado somatic index (GSI) and upregulated the expression of the SOD enzyme in zebrafish ovaries. Moreover, the testosterone-induced follicular maturation arrest was normalized by N2 treatment in histopathology studies. In addition, the gene expression studies of Tox3 and Denndla in zebrafish demonstrated that N2 could impair PCOS condition. Furthermore, to confirm the N2 activity, the in-silico studies were performed against PCOS susceptible genes Tox3 and Dennd1a using molecular docking and molecular dynamic simulations. The results suggested that N2 alleviated the oxidative stress and apoptosis in-vitro and in-vivo and altered the expression of PCOS key genes.


Subject(s)
Polycystic Ovary Syndrome , Female , Humans , Animals , Cricetinae , Polycystic Ovary Syndrome/pathology , Cricetulus , Zebrafish/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , CHO Cells , Molecular Docking Simulation , Signal Transduction , Testosterone , Oxidative Stress , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Death Domain Receptor Signaling Adaptor Proteins/genetics , Death Domain Receptor Signaling Adaptor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL